
Week 2 - Wednesday

 What did we talk about last time?
 π
 math library
 Archimedes' approximation
 Leibniz's approximation

 The famous mathematics educator George Pólya outlined a
series of steps for solving problems:
1. Understand the problem
2. Make a plan
3. Execute the plan
4. Look back and reflect

 John Wallis was a 17th century British
mathematician who is believed to have
come up with the ∞ symbol for infinity

 Of course, he also found an approximation
for π

𝜋𝜋
2

= 2
1
� 2
3
� 4
3
� 4
5
� 6
5
� 6
7
� 8
7
⋯

𝜋𝜋
2

= 2
1
� 2
3
� 4
3
� 4
5
� 6
5
� 6
7
� 8
7
⋯

 As with Leibniz, we will use the Accumulator Pattern
 Although the Accumulator Pattern often adds things up, we'll be

multiplying stuff as we go
 When summing, we start with 0
 When multiplying, we start with 1

 Note that both the numerator and the denominator are used
twice in a row before increasing by two
 But they change on opposite turns!

 How can we apply Pólya's problem solving approach?

 To make choices in our program, we can use an if-statement:

 x is smallwill only print out if x is less than 5
 In this case, we know that it is, but x could come from user input

or a file or elsewhere

x = 4

if x < 5:
print('x is small!')

keyword
if

Any Boolean
expression

Any executable statements

if condition :
statement(s)

Note: The colon after the condition and the
indentation before the statement are required

 Any statement that evaluates to a Boolean is legal
 Examples:
 x <= y
 True
 s == 'Help me!' and z < 4

 In actual fact, almost anything can be used for the condition
 Integers and floating-point values are considered True as long as they

aren't zero
 Most strings (except the empty string '') are considered True
 Avoid using things that aren't Booleans, since it's confusing

 The most common condition you will find is a comparison
between two things

 In Python, that comparison can be:
 == equals
 != does not equal
 < less than
 <= less than or equal to
 > greater than
 >= greater than or equal to

 These are called relational operators

 You can use the == operator to compare any two things of the
same type

 Different numerical types can be compared as well (3 ==
3.0)

 Be careful with floating-point types, 0.33333333 is not
equal to 0.33333332

x = 3
if x == 4:
print('This doesn't print')

 Any place you could have used the == operator, you can use
the != operator

 If == gives True, the != operator will always give False,
and vice versa

 If you want to negate a condition, you can always use the not
operator

is the same as

if x != 4:

if not(x == 4):

 Remember, a single equal sign (=) is the assignment operator
(think of a left-pointing arrow)

 A double equals (==) is a comparison operator
 Assigning variables in if statements is not allowed

y = 10
if y = 6: # syntax error
print('Oh, no!')

b = False
if b = False: # syntax error
print('Not this?')

 Inequality is very important in programming
 You may want to take an action as long as a value is below a

certain threshold
 For example, you might want to keep bidding at an auction until

the price is greater than what you can afford

 Watch for strict inequality (<) vs. non-strict inequality (<=)

if x <= 4:
print('x is less than 5')

 Just like less than or equal to, except the opposite
 Note that (because of the All-Powerful Math Gods) the

opposite of <= is > and the opposite of >= is <
 Thus,
 not(x <= y) is equivalent to (x > y)
 not(x >= y) is equivalent to (x < y)

 You can also have multiple Boolean conditions in an if
statement

 You can join them together with:
 and (which results in a True value only if both the conditions it joins

are True)
 or (which result in a True value if either of the conditions it joins are
True)

if attempts < 5 and password == 'open sesame':
print('You know the secret!')

 The random library lets us produce random numbers
 It has two functions that will be useful to us:
 randint(a, b): Returns a random integer nwhere a ≤ n ≤ b
 random(): Returns a random floating-point value from [0, 1)

 To use them, import random and then call the functions
qualified by random followed by a period:

import random

dice = random.randint(1, 6)
percentage = random.random()

 We can do something called a
Monte Carlo approximation of π

 We "throw" darts at a 1 x 1 square
in the upper right corner of a
circle with radius 1

 We count the ones that fall inside the circle and
divide by the total darts thrown

 That fraction is an estimation of the area of one
fourth of the circle

 By multiplying by 4, we approximate π

y

x

 Here is a function that performs the Monte Carlo
approximation:

import random

def monteCarlo(darts):
hits = 0
for i in range(darts):

x = random.random()
y = random.random()
if x*x + y*y <= 1.0: # see if dart is in circle

hits += 1
return 4.0 * hits / darts

 More on selection statements
 Visualization of Monte Carlo simulation
 We'll mostly have work time for assignments
 Assignment 1 is due Friday by midnight
 Assignment 2 will be available to work on as well

• 20 employers in the fields of
Engineering and Computer Science

• 20 alumni members attending
• Free professional LinkedIn

headshots
• Plenty of food and great

conversations
• Build new connections on LinkedIn
• Door prizes
• Network with people in your field
• Learn about possible internships
• Gain new insights about your major
• Required event for all sophomores

 Review Chapter 2 of the textbook
 Emergency elections for CS Club
 Do you want to have a voice in CS Club?
 Come vote at 4 p.m. this Wednesday, August 30 in Point 113!

	COMP 1800
	Last time
	Questions?
	Back to π
	Problem solving
	John Wallis
	Wallis approximation
	Selection Statements
	Behold!
	Anatomy of an if
	Conditions in the if
	Comparison
	Equals
	Not Equals
	= != ==
	Less Than (or Equal To)
	Greater Than (or Equal To)
	and and or
	Another useful library
	Monte Carlo approximation of π
	Monte Carlo approximation function
	Quiz
	Upcoming
	Next time…
	Slide Number 25
	Reminders

